Factorial zeros

Find how many ending zeros have

$$
\mathrm{n}!=1 * 2 * 3 * \ldots * \mathrm{n}
$$

$$
\mathrm{n} \leq 1000
$$

Samples

Input	Output
26	6

Decomposition into simple

Print the decomposition of a natural number n into prime factors. Prime factors should be in ascending order and separated by spaces. $2 \leq n \leq 10^{6}$.

Samples

Input	Output
75	355

Fractions summarization

You are given four non-negative numbers a, b, c, and d. Add two rational fractions a / b and c / d, where the result is represented as an irreducible fraction m / n. Print the numbers m and $n . a, b, c, d \leq 1000$.
Samples

Input	Output
310518	2645

Sum with large divider

You are given a positive integer N . Represent N as $A+B$, so that $\mathrm{GCD}(\mathrm{A}, \mathrm{B})$ is maximal, $A \leq B$. Output A and B. If multiple answers are possible then consider an output with the minimum value of A. $n \leq 10000000$

Samples

Input	Output
35	728

Reverse order

Given an array of integers A [0..n). Without using other arrays, rearrange the elements of array A in the reverse order. $n \leq 10,000$.

Samples

Input	Output
4	$2-593$
$39-52$	

Maximal sum

Given two arrays of integers which have the same length, $A[0 . . n-1]$ and $B[0 . . n-1]$. It is necessary to find the first pair of indices $i 0$ and $j 0, i 0<=j 0$, such that $A[i 0]+B[j 0]=\max A[i]+B[j]$, where $0<=i<n, 0<=j<n, i$ < $=j$.

Samples

Input	Output
4	01
$4-86$	0
-103	1

