Factorial zeros

Find how many ending zeros have

$$n! = 1 * 2 * 3 * ... * n$$

$$n\,\leq 1000$$

Samples

Input	Output
26	6

Decomposition into simple

Print the decomposition of a natural number n into prime factors. Prime factors should be in ascending order and separated by spaces. $2 \le n \le 10^6$.

Samples

Input	Output
75	3 5 5

Fractions summarization

You are given four non-negative numbers a, b, c, and d. Add two rational fractions a/b and c/d, where the result is represented as an irreducible fraction m/n. Print the numbers m and n. a, b, c, $d \le 1000$.

Samples

Input	Output
3 10 5 18	26 45

Sum with large divider

You are given a positive integer N. Represent N as A + B, so that GCD (A, B) is maximal, $A \le B$. Output A and B. If multiple answers are possible then consider an output with the minimum value of A. $n \le 10~000~000$

Samples

Input	Output
35	7 28

Reverse order

Given an array of integers A [0..n). Without using other arrays, rearrange the elements of array A in the reverse order. $n \le 10.000$.

Samples

Input	Output
	2 -5 9 3
3 9 -5 2	

Maximal sum

Given two arrays of integers which have the same length, A[0..n-1] and B[0..n-1]. It is necessary to find the first pair of indices i0 and j0, i0 <= j0, such that A[i0] + B[j0] = max A[i] + B[j], where 0 <= i < n, 0 <= j < n, i <= j.

Samples

Input	Output
4 4 -8 6 0 -10 3 1 1	0 1